911 research outputs found

    Precision placement of fertiliser for optimising the early nutrition of vegetable crops : a review of the implications for the yield and quality of crops, and their nutrient use efficiency

    Get PDF
    The research outlined in this paper highlights the importance of the early nutrition of vegetable crops, and its long-term effects on their subsequent growth and development. Results are also presented to demonstrate how the nutrient supply during the establishment stages of young seedlings and transplants can be enhanced by targeting fertiliser to a zone close to their developing roots. Three different precision fertiliser placement techniques are compared for this purpose: starter, band or side-injected fertiliser. The use of each of these methods consistently produced the same (or greater) yields at lower application rates than those from conventional broadcast applications, increasing the apparent recovery of N, P and K, and the overall efficiency of nutrient use, while reducing the levels of residual nutrients in the soil. Starter fertilisers also advanced the maturity of some crops, and enhanced produce quality by increasing the proportions of the larger and/or more desirable marketable grades. The benefits of the different placement techniques are illustrated with selected examples from research at Warwick HRI using different vegetable crops, including lettuce, onion and carrot

    Nitrate pollution from horticultural production systems : tools for policy and advice from field to catchment scales

    Get PDF
    The implementation of the Nitrates Directive has imposed a requirement to restrict N fertiliser and manuring practices on farms across the EU in order to reduce nitrate losses to water. These requirements have since been extended by the more demanding Water Framework Directive, which broadens the focus from the control of farm practices to a consideration of the impacts of pollutants from all sources on water quality at a catchment or larger scale. Together, these Directives set limits for water quality, and identify general strategies for how these might be achieved. However, it is the responsibility of policy makers in each Nation State to design the details of the management practices and environmental protection measures required to meet the objectives of the legislation, to ensure they are appropriate for their specific types of land use and climate. This paper describes various modelling tools for comparing different cropping and land use strategies, and illustrates with examples how they can inform policy makers about the environmental benefits of changing management practices and how to prioritise them. The results can help to provide the specific advice on N fertiliser and land use management required by farmers and growers at a field scale, and by environmental managers at a catchment or larger scale. A further example of how results from multiple catchments can be up-scaled and compared using Geographic Information Systems is also outlined

    A novel method of supplying nutrients permits predictable shoot growth and root: shoot ratios of pre-transplant bedding plants

    Get PDF
    BACKGROUND AND AIMS: Growth of bedding plants, in small peat plugs, relies on nutrients in the irrigation solution. The object of the study was to find a way of modifying the nutrient supply so that good-quality seedlings can be grown rapidly and yet have the high root : shoot ratios essential for efficient transplanting. METHODS: A new procedure was devised in which the concentrations of nutrients in the irrigation solution were modified during growth according to changing plant demand, instead of maintaining the same concentrations throughout growth. The new procedure depends on published algorithms for the dependence of growth rate and optimal plant nutrient concentrations on shoot dry weight Ws (g m–2), and on measuring evapotranspiration rates and shoot dry weights at weekly intervals. Pansy, Viola tricola ‘Universal plus yellow’ and petunia, Petunia hybrida ‘Multiflora light salmon vein’ were grown in four independent experiments with the expected optimum nutrient concentration and fractions of the optimum. Root and shoot weights were measured during growth. KEY RESULTS: For each level of nutrient supply Ws increased with time (t) in days, according to the equation {Delta}Ws/{Delta}t=K2Ws/(100+Ws) in which the growth rate coefficient (K2) remained approximately constant throughout growth. The value of K2 for the optimum treatment was defined by incoming radiation and temperature. The value of K2 for each sub-optimum treatment relative to that for the optimum treatment was logarithmically related to the sub-optimal nutrient supply. Provided the aerial environment was optimal, Rsb/Ro{approx}Wo/Wsb where R is the root : shoot ratio, W is the shoot dry weight, and sb and o indicate sub-optimum and optimum nutrient supplies, respectively. Sub-optimal nutrient concentrations also depressed shoot growth without appreciably affecting root growth when the aerial environment was non-limiting. CONCLUSION: The new procedure can predict the effects of nutrient supply, incoming radiation and temperature on the time course of shoot growth and the root : shoot ratio for a range of growing conditions

    Tracking Testing Framework at BAE

    Get PDF
    For this project the team created a testing framework for the tracking and fusion domain. This framework allows for automated testing of tracking engines and integrates with the Jenkins continuous integration server. The framework has components that generate truth data, add error to the truth to create modeled data, transform the modeled data into an estimate of the truth, calculate metrics by comparing this estimate to the actual truth, and display the metrics in a human readable format on Jenkins. The team also produced a user guide that provides documentation and instruction for use of the framework

    1.6 W continuous-wave Raman laser using low-loss synthetic diamond

    Get PDF
    Low-birefringence (Δn<2x10−6), low-loss (absorption coefficient <0.006cm−1 at 1064nm), single-crystal, synthetic diamond has been exploited in a CW Raman laser. The diamond Raman laser was intracavity pumped within a Nd:YVO4 laser. At the Raman laser wavelength of 1240nm, CW output powers of 1.6W and a slope efficiency with respect to the absorbed diode-laser pump power (at 808nm) of ~18% were measured. In quasi-CW operation, maximum on-time output powers of 2.8W (slope efficiency ~24%) were observed, resulting in an absorbed diode-laser pump power to the Raman laser output power conversion efficiency of 13%

    Iso-osmotic regulation of nitrate accumulation in lettuce (Lactuca sativa L.)

    Get PDF
    Concerns about possible health hazards arising from human consumption of lettuce and other edible vegetable crops with high concentrations of nitrate have generated demands for a greater understanding of processes involved in its uptake and accumulation in order to devise more sustainable strategies for its control. This paper evaluates a proposed iso-osmotic mechanism for the regulation of nitrate accumulation in lettuce (Lactuca sativa L.) heads. This mechanism assumes that changes in the concentrations of nitrate and all other endogenous osmotica (including anions, cations and neutral solutes) are continually adjusted in tandem to minimise differences in osmotic potential of the shoot sap during growth, with these changes occurring independently of any variations in external water potential. The hypothesis was tested using data from six new experiments, each with a single unique treatment comprising a separate combination of light intensity, N source (nitrate with or without ammonium) and nitrate concentration carried out hydroponically in a glasshouse using a butterhead lettuce variety. Repeat measurements of plant weights and estimates of all of the main soluble constituents (nitrate, potassium, calcium, magnesium, organic anions, chloride, phosphate, sulphate and soluble carbohydrates) in the shoot sap were made at intervals from about 2 weeks after transplanting until commercial maturity, and the data used to calculate changes in average osmotic potential in the shoot. Results showed that nitrate concentrations in the sap increased when average light levels were reduced by between 30 and 49 % and (to a lesser extent) when nitrate was supplied at a supra-optimal concentration, and declined with partial replacement of nitrate by ammonium in the external nutrient supply. The associated changes in the proportions of other endogenous osmotica, in combination with the adjustment of shoot water content, maintained the total solute concentrations in shoot sap approximately constant and minimised differences in osmotic potential between treatments at each sampling date. There was, however, a gradual increase in osmotic potential (ie a decline in total solute concentration) over time largely caused by increases in shoot water content associated with the physiological and morphological development of the plants. Regression analysis using normalised data (to correct for these time trends) showed that the results were consistent with a 1:1 exchange between the concentrations of nitrate and the sum of all other endogenous osmotica throughout growth, providing evidence that an iso-osmotic mechanism (incorporating both concentration and volume regulation) was involved in controlling nitrate concentrations in the shoot

    A timeband framework for modelling real-time systems

    Get PDF
    Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper

    Developing a reliable strategy to infer the effective soil hydraulic properties from field evaporation experiments for agro-hydrological models

    Get PDF
    The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately

    Effect of clay and organic matter amendments on water and nutrient retention of sandy soils: column leaching experiment

    Get PDF
    Two types of clay and an organic matter was used to investigate the potential of combined application of clay and organic matter (OM) to improve water and nutrient retention of sandy soils. Sandy soils are generally known to be problematic because of poor water and nutrient retention resulting in economic losses and environmental pollution. A laboratory column leaching experiment was conducted using a pure sand (PS) and a sandy loam (SL). Soils were amended with Kaolin (K) and bentonite (B) at 0, 2.5 and 5% (w/w) and peat (Pt) at 0, 10, 20, and 30% (v/v). Water and nutrient retention was simulated using ammonium nitrate at 150 kg N /ha in RO water. Water retention increased with the rate of each amendment applied, except for the SL amended with 2.5%K. Pt-clay combinations were more effective than either Pt or clay alone at the same rate. Combined application retained more water than the additive effect of Pt and clay for corresponding treatment except for 2.5%B in PS soil. For nutrient retention, all the clay amendments reduced nitrate and ammonium nitrogen losses in PS. Application of Pt, 2.5%K with or without Pt and 5%B with >20%Pt reduced nitrate leaching in SL. The results demonstrate that amending sandy soils with both clay and organic matter has potential to improve their water and nutrient retentio
    • …
    corecore